25 research outputs found

    Automated extraction of potential migraine biomarkers using a semantic graph

    Get PDF
    Problem Biomedical literature and databases contain important clues for the identification of potential disease biomarkers. However, searching these enormous knowledge reservoirs and integrating findings across heterogeneous sources is costly and difficult. Here we demonstrate how semantically integrated knowledge, extracted from biomedical literature and structured databases, can be used to automatically identify potential migraine biomarkers. Method We used a knowledge graph containing more than 3.5 million biomedical concepts and 68.4 million relationships. Biochemical compound concepts were filtered and ranked by their potential as biomarkers based on their connections to a subgraph of migraine-related concepts. The ranked results were evaluated against the results of a systematic literature review that was performed manually by migraine researchers. Weight points were assigned to these reference compounds to indicate their relative importance. Results Ranked results automatically generated by the knowledge graph were highly consistent with results from the manual literature review. Out of 222 reference compounds, 163 (73%) ranked in the top 2000, with 547 out of the 644 (85%) weight points assigned to the reference compounds. For reference compounds that were not in the top of the list, an extensive error analysis has been performed. When evaluating the overall performance, we obtained a ROC-AUC of 0.974. Discussion Semantic knowledge graphs composed of information integrated from multiple and varying sources can assist researchers in identifying potential disease biomarkers

    The implicitome: A resource for rationalizing gene-disease associations

    Get PDF
    High-throughput experimental methods such as medical sequencing and genome-wide association studies (GWAS) identify increasingly large numbers of potential relations between genetic variants and diseases. Both biological complexity (millions of potential gene-disease associations) and the accelerating rate of data production necessitate computational approaches to prioritize and rationalize potential gene-disease relations. Here, we use concept profile technology to expose from the biomedical literature both explicitly stated gene-disease relations (the explicitome) and a much larger set of implied gene-disease associations (the implicitome). Implicit relations are largely unknown to, or are even unintended by the original authors, but they vastly extend the reach of existing

    The FAIR Guiding Principles for scientific data management and stewardship

    Get PDF
    There is an urgent need to improve the infrastructure supporting the reuse of scholarly data. A diverse set of stakeholders—representing academia, industry, funding agencies, and scholarly publishers—have come together to design and jointly endorse a concise and measureable set of principles that we refer to as the FAIR Data Principles. The intent is that these may act as a guideline for those wishing to enhance the reusability of their data holdings. Distinct from peer initiatives that focus on the human scholar, the FAIR Principles put specific emphasis on enhancing the ability of machines to automatically find and use the data, in addition to supporting its reuse by individuals. This Comment is the first formal publication of the FAIR Principles, and includes the rationale behind them, and some exemplar implementations in the community

    The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.

    Get PDF
    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression profiles of X-linked genes. Tissues whose tissue-specific genes are very highly expressed (e.g., secretory tissues, tissues abundant in structural proteins) are also tissues in which gene expression is relatively rare on the X chromosome. These trends cannot be fully accounted for in terms of alternative models of biased expression. In conclusion, the notion that it is hard for genes on the Therian X to be highly expressed, owing to transcriptional traffic jams, provides a simple yet robustly supported rationale of many peculiar features of X's gene content, gene expression, and evolution

    Discovery of widespread transcription initiation at microsatellites predictable by sequence-based deep neural network

    Get PDF
    Using the Cap Analysis of Gene Expression (CAGE) technology, the FANTOM5 consortium provided one of the most comprehensive maps of transcription start sites (TSSs) in several species. Strikingly, ~72% of them could not be assigned to a specific gene and initiate at unconventional regions, outside promoters or enhancers. Here, we probe these unassigned TSSs and show that, in all species studied, a significant fraction of CAGE peaks initiate at microsatellites, also called short tandem repeats (STRs). To confirm this transcription, we develop Cap Trap RNA-seq, a technology which combines cap trapping and long read MinION sequencing. We train sequence-based deep learning models able to predict CAGE signal at STRs with high accuracy. These models unveil the importance of STR surrounding sequences not only to distinguish STR classes, but also to predict the level of transcription initiation. Importantly, genetic variants linked to human diseases are preferentially found at STRs with high transcription initiation level, supporting the biological and clinical relevance of transcription initiation at STRs. Together, our results extend the repertoire of non-coding transcription associated with DNA tandem repeats and complexify STR polymorphism

    Vessel grouping patterns in subfamilies Apocynoideae and Periplocoideae confirm phylogenetic value of wood structure within Apocynaceae

    Get PDF
    This study contributes to our understanding of the phylogenetic significance and major evolutionary trends in the wood of the dogbane family (Apocynaceae), one of the largest and economically most important angiosperm families. Based on LM and SEM observations of 56 Apocynoideae species—representing all currently recognized tribes—and eight Periplocoideae, we found striking differences in vessel grouping patterns (radial multiples vs. large clusters) between the mainly nonclimbing apocynoid tribes (Wrightieae, Malouetieae, Nerieae) and the climbing lineages (remaining Apocynoideae and Periplocoideae). The presence of large vessel clusters in combination with fibers in the ground tissue characterizing the climbing Apocynoideae and Periplocoideae clearly contrasts with the climbing anatomy of the rauvolfioids (solitary vessels plus tracheids in ground tissue), supporting the view that (1) the climbing habit has evolved more than once in Apocynaceae, (2) the three nonclimbing apocynoid tribes are basal compared to the climbing apocynoids, and (3) Periplocoideae belong to the crown clade. The wood anatomy within the nonclimbing and climbing lineages is rather homogeneous, although a combination of specific characters (e.g. presence of septate fibers, axial parenchyma distribution, abundance of uniseriate compared to multiseriate rays, and presence and location of prismatic crystals) may be used to identify several tribes

    The value of data

    No full text
    Data citation and the derivation of semantic constructs directly from datasets have now both found their place in scientific communication. The social challenge facing us is to maintain the value of traditional narrative publications and their relationship to the datasets they report upon while at the same time developing appropriate metrics for citation of data and data constructs
    corecore